

INDIAN SCHOOL AL WADI AL KABIR

CLASS XI

PHYSICS FINAL EXAMINATION (2023 - 24) ANSWER KEY

Q.NO.	ANSWERS	MARKS
1	d) increasing acceleration	1
2	c) 100m/s	1
3	b) Zero	1
4	(a) kinetic energy	1
5	(b) Angular momentum	1
6	a) 14 \hat{i} - 38 \hat{j} + 16 \hat{k}	1
7	a) $M^{-1}L^{3}T^{-2}$	1
8	b) pressure of the liquid.	1
9	d) Adiabatic change	1
10	b) 19200 J	1
11	b) $\frac{1}{2}$ k _B T	1
12	d) Stationary waves	1
13	c) If Assertion is true but Reason is false.	1
14	a) If both Assertion and Reason are true and Reason is correct	1
15	a) If both Assertion and Reason are true and Reason is correct	1
15	explanation of Assertion	1
16	d) If both Assertion and Reason are false.	1
17	Dimension of a is MLT^{-3}	1
	Dimension of b is MLT ⁻⁴	1
18	During the course of their performance, an ice skater, a ballet	
	dancer or an acrobat take advantage of the principle of	
	conservation of angular momentum (i.e. L=I w = constant), by	
	stretching out arms and legs or vice-versa. On doing so, their	2
	moment of inertia increases/decreases. Hence angular velocity w	
	of their spin motion decreases/increases accordingly.	
19	pressure increases inside the cooker, which also increases the	2
20	boiling point of water.	
20	a) b)	
	A	
		1.1
	9	1+1
	+ + + + + + + + + + + + + + + + + + +	$\frac{1}{2} \pm \frac{1}{2}$
		/2 1/2
	OR	
	Initial motion under gravity	

	U=0, s=50	
	$v^2 = u^2 + 2gs$	Formula
	v ² =1000	1/2
	$v = 10\sqrt{10} \text{ m/s}$	
	Final motion with deceleration	1/2
	$u = 10\sqrt{10} \text{ m/s}$	
	$a = -2m/s^2$	
	v=3m/s	
	$v^2 = u^2 + 2as$	
	9=1000-4s	
	s=991/4=247.75m	1/2
	Total distance=50+247.75=297.75m	1/2
21	Travelling	1/2
	Amplitude=4cm	1/2
	Wavelength= $2\pi/k = 2\pi/0.010 \pi = 200$ cm	1/2
	Frequency=w/2 $\pi = 2 \pi/2 \pi = 1 \text{ s}^{-1}$	1/2
22	Statement	1
	Mass of the gun, $M = 100 \text{ kg}$	1
	Mass of the shell, $m = 0.020$ kg	1/2
	Muzzla speed of the shall $y = 90 \text{ m/s}$, <u> </u>
	Muzze speed of the shell, v = 60 m/s	
	Recoil speed of the gun = V	
	Both the gun and the shell are at rest initially.	
	Initial momentum of the custom = 0	
	initial momentum of the system - o	
	Final momentum of the system = $mv - MV$	
	Here, the negative sign appears because the directions of the shell and the gun are opposite to each other.	
	According to the law of conservation of momentum:	
	Final momentum = Initial momentum	
	mv - MV = 0	1⁄2
	$\therefore V = \frac{mv}{M}$	1/2
	$=\frac{0.020\times80}{100\times1000}=0.016 \text{ m/s}$	1/2
23	U=1/2 kx ²	1/2
	Given, Work done = 20 joule, $x = 0.1 \text{ m}$	
	Work done = Potential energy $(U) = \frac{1}{2}kx^2$	1⁄2
	1	1⁄2
	$20 = \frac{1}{2}k \times 0.1^2$; therefore, $k = 4000 N/m$	1/2
	When it stretched further 0.1 m then x = 0.2 m, then P.E (U') = $\frac{1}{2} \times 4000 \times 0.2^2 = 80 J$	1/2
	Change in $P.E = 80 - 20 = 60 J$	1⁄2
	-	
24	$g_d = g_s(1-d/R)$	1
	gd/gs=R-d/R	
	Thus for the depth where acceleration is 25% of the surface	
	gravity we get gd as g/4	1
	g/4=g(1-d/R)	

	\Rightarrow d=3/4×R	
	=4800km	1/2
	OR	1/2
	Three laws	
		1/2+1/2+1/2
	$T^{2} \propto R^{3}$ $\Rightarrow \left(\frac{T_{1}}{T_{2}}\right)^{2} = \left(\frac{R_{1}}{R_{2}}\right)^{3}$ (T)	1⁄2
	$\Rightarrow \left(\frac{\mathbf{I}_1}{\mathbf{T}_2}\right) = \left(\frac{\mathbf{R}_1}{\mathbf{R}_2}\right)^{-1} = \left(\frac{\mathbf{I}}{\mathbf{I}}\right)^{-1}$	
	$\Rightarrow \frac{T_2}{T_1} = (\mathbf{Z})^{3/2} = \int \mathbf{g}$	1⁄2
	$\Rightarrow T_2 - \sqrt{8} \times T_1 - \sqrt{8} \times 7 - 10$ hours	1/2
25	(a) within the elastic limit, stress developed is directly	1
	proportional to the strain produced in a body.	
	(b)more elastic/ more Young's modulus	1
	(b) For a wire of radius r stretched under a force F, Let I' be the	
	times	1/2
	EL EL	/2
	$Y = \frac{FL}{\pi r^2 L} \text{or} = \frac{FL}{\pi r^2 Y}$	
	4FXL FL L	1⁄2
	$I' = \frac{4\pi \pi B}{\pi (4r)^2 L} = \frac{4\pi B}{4\pi r^2 Y} = \frac{1}{4}$	
26	Ploughing of fields is essential for preserving moisture in the soil.	1
	By ploughing, the fine capillaries in the soil are broken. This	-
	ensures that water does not rise to the surface of the soil due to	
	capillary action and evaporate	
	e	
	W = F + U	
	According to Stoke's law, the viscous force F is given	1/
	$\mathbf{F} = 6\pi\mathbf{n} \mathbf{a}\mathbf{v}$	72
	The buoyant force $U = Weight of liquid displaced by$	1/2
	the sphere	/ 2
	$= 4/3 \pi a^3 \sigma g$	
	The weight of the sphere, $W = 4/3 \pi a^3 \rho g$	1/2
	Substituting in equation (2),	1/2
	$4/3 \pi a^3 \rho g = 6\pi \eta av + 4/3 \pi a^3 \sigma g$	
	So, $V = 2/9 [a^2 (\rho - \sigma)g]/\eta$	
27	Statement	1
<i>∠1</i>	Four postulates	$(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2})$
I	rour postatutos	(,2,,2,,2,,2,,2)

28	a.	1⁄2
		1/2

	Proming the regions	1
	$\int_{\text{parturn}} \int_{0}^{1} \int_{0}^{1}$	¹ /2+ ¹ /2
	A = 40 cm $v_{\text{max}} = wA = 2\pi/T \times 40 = 2\pi/0.05 \times 40 = 16\pi \text{m/s}$	
29	i) b) upto <i>OB</i>	1
	ii) b) B iii) c) OO ₁ OR	1
	a) point B	1
	iv) d) The stress corresponding to point E	
30	 a) frictional force is directly proportional to the normal reaction. c)kinetic friction is greater than static friction. d)force of friction is more between rough surfaces than between 	1 1 1
	iv) a)0.5 OR c)1.5 m/s^2	1
31	Projectile definition	1
01	Diagram/Graph	1/2
	Writing the x components of 2 nd equation of motion,	
	$x = v_0 cos\theta(t)$	1/2
	$t=x/v_0 cos\theta$ Writing the y components of 2 nd equation of motion, $y=x_0 cin\theta(t)$ $\frac{1}{2}at^2$	1/2
	$y = v_0 \sin(t) - \frac{1}{2}gt$	
	Form of parabola	
	$y=ax+bx^2$	1/2
	a condition of the second s	1/2
	b)Writing the y components of 2^{nd} equation of motion,	1/2
	$y = v_0 \sin\theta(t) - \frac{1}{2}gt^2$	1⁄2
	Substitution for time for maximum height	
	Substitution and Final expression for maximum height, $H = \frac{v_0^2 \sin^2 \theta}{2a}$	1/2
	OR	72
	a) Statement of triangle law of vector addition b)diagram	1 1⁄2
	derivation	2
	rinal expression	1/2
	c) when $\theta = 0^0$, R=A+B and $\theta = 90^0$, R= $\sqrt{A^2+B^2}$	1/2 1/2
32		1

	(a)Bernoulli's principle states that in a streamline flow of an ideal liquid the sum of pressure energy potential energy per unit volume	
	and kinetic energy per unit volume is always a constant.	
	Let ρ be the density of the fluid. Whatever mass of the fluid	
	enters the pipe at section A in time Δt , an equal mass of fluid	
	flows out at section b in time Δt .	
	At section A	
	Work done on the liquid column of certain mass m =	1/2
	W = force x displacement	1/2
	$W = P_1 x a_1 x$ displacement	1/2
	$= P_1 x$ volume of water	
	$= P_1 x mass/density$	
	$= P_1 m/\rho = \text{pressure energy}$	
	Kinetic energy = $\frac{1}{2}$ mv ₁ ²	
	Potential energy = mgn_1	
	I otal energy at $A = P_1 m/\rho + \frac{1}{2} mv_1^2 + mgn_1$	1/2
	Similarly total energy as $B = P_2m/\rho + \frac{1}{2}mv_2^2 + mgn_2$	
	According to law of conservation of energy $T E$ at $A = T E$ at B	
	$P_1 m / 0 + \frac{1}{2} m y_1^2 + m g h_1$ $P_2 m / 0 + \frac{1}{2} m y_2^2 + m g h_2$	
	Dividing by m/q , we get	1/2
	$P_1 + oy_1^2/2 + ogh_1 = P_2 + oy_2^2/2 + ogh_2$	1/2
	$i e P + ov^2/2 + ogh = a constant$	1
	any one application	1
	OR	
	Difference streamline and turbulent flow of a liquid	1
	Any application of pascals law- explanation C_{ivery} The area of the input pictor is $A_i = 0.05 \text{ m}^2$	11/2
	Given: The area of the input piston is A1=0.05 m ⁻ .	
	The area of the output piston is $A0=0.70 \text{ m}^2$.	1
	The output force is given as Fo=12000 N	
	According to Pascal's Law, Pi=Po	1
	Fi/Ai=Fo/Ao	1
	Fi/0.05=120000/0.70	1/2
	Fi=857 N	/2
	Pi=Fi/Ai=857/0.05=17140Pa	
33	Definition -Simple harmonic motion	1
	Derivation- Expression for displacement, velocity and acceleration	2
	Graph-displacement with time +velocity with time	-
	OR	1+1
	(a) Expression for total anarray	
	(a) Expression for total energy	
	Graphical representation	2
	(b) Expression for Time period (Diagram +derivation)	1
		(1/ 11/)
		$(\frac{1}{2}+1\frac{1}{2})$